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DURABILITY INVESTIGATION OF A GROUP
OF STRAIN GAGE PRESSURE TRANSDUCERS

PAUL S. LEDERER AND JOHN S. HILTEN

A durability investigation was conducted on a group of
eighteen bonded-wire strain gage pressure transducers with
ranges of 0 to 15 psig (0 to 1.03 x 105 Pa) and 0 to 100 psig
(0 to 6.89 x 10° Pa) using an improved version of a previously
developed technique. Some of the transducers were
subjected to 40 x 106 pressure cycles at a 5-Hz rate at
laboratory ambient conditions, others were cycled at a

_temperature of 150°F (65.6°C). The largest change in
sensitivity observed was 0.22% for a 100-psig transducer
subjected to 40 x 106 pressure cycles at 150°F. The largest
change in zero pressure output observed was 0.91% FS for the
same transducer. None of the transducers failed completely
as a result of cycling at or below full scale pressure.

1,  INTRODUCTION

The increasing use of pressure transducers for measurement and con-
trol, in applications -ranging from laboratory research to industrial
process control, has been accompanied by tincreased demands on the meas-
uring accuracy and durability of these devices over extended periods of
time. '

At the request of the NASA Lewis Research Center, the Instrumentation
Applications Section of the National Bureau of Standards undertook to
investigate the durability of pressure transducers subjected to long-
term pressure cycling at laboratory ambient and at elevated temperatures.
This task, described in this report, has two major objectives: (a) The
development of the optimum evaluation techniques for assessing the
durability characteristics of pressure transducers, and, (b) the actual
determination of these characteristics for a number of selected pressure
transducers of the type currently used in engine-test facilities at the
Research Center. The results of this work are expected to provide the
desired performance characteristic information on the particular trans-
‘ducers tested, and to lead to the development of evaluation techniques of
general benefit to users and to manufacturers of pressure transducers.

1.1 Related and Previous Work

The NBS InterAgency Transducer Project, a part of the program of the
Instrumentation Applications Section of NBS, had previously complete
two tasks dealing with transducer durability. In the first task {1]° six
di fferent, commercial, pressure transducers were cycled at a rate of fifty
times per minute from zero gage pressure to about 90% of the full scale
range (FS) of the transducers. Cycling was interrupted at increasing
time intervals for static calibration of the transducers. The tests were

lrigures in brackets indicate the literature references at the end of
the paper. )



performed at laboratory ambient temperature and continued until 106
pressure cycles had been applied to the transducers. A summary of test
results from this investigation follows:

1. Both zero préséure output and Sehsitivity changed significantly
during the first 100,000 cycles and more gradually after that.

2. After about 10° cycles, the zero pressure output had shifted a
maximum of about 1% FS, while the sensitivity had changed a maxi-
mum of 0.5%.

3. Linearity and hysteresis changes due to cycling were small
compared to changes in zero output and sensitivity.

4. Very limited testing at moderate overpressure produced drastic
performance changes and radical changes in operating life under
these conditions [1].

In the second task, [2] ten different, commercial, strain gage pres-
sure transducers were subjected to an elevated temperature (slightly below
the maximum recommended operating temperature) for 5 days. This was fol-
lowed by returning the transducers to laboratory ambient conditions over
the weekend. During the following week the transducers were subjected
to the elevated temperature again for five days. Two days at ambient
conditions followed. This procedure wak continued for five weeks, after
which the transducers were kept at ambient conditions for three more
weeks. Static calibrations were performed at regular intervals through-
out the entire period. Test results can be summarized as follows:

1. Sensitivity changed progressively in a few cases during the test
period, and zero output changed in more cases. Most of the
changes occurred during the first three weeks of the test.

2. Storage of the transducers at the elevated temperatures resulted
in permanent changes in practically all cases,with observed
maxima at the end of the total eight-week period ranging from
-0.4% to +0.4% for sensitivity, and from -3.0% FS to +4.5% FS
for zero pressure output.

" 3. Although the sampling was too small for rigorous conclusions,
semiconductor strain gage devices appeared to show greater
permanent changes in characteristics than metallic strain gage
devices.

4. ‘Three presumably identical samples (same model and range, pur-
chased at the same time) showed significant variations in
behavior, suggesting that transducers even from the same batch do
not behave in.the same manner [2].

Since both investigations disclosed that substantial changes in per-
formance characteristics occur as a result of pressure cycling and of
storage at elevated temperatures, we felt it desirable to investigate the
- effects of a combination of these test conditions. Such a combination
of environments is not unlikely in an actual application situation, and
indeed is precisely the situation in the engine-test laboratory at the
NASA Lewis Research Center. Since the completion of the two earlier
tasks we had acquired improved laboratory equipment which would enable
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us to carry out an invéstigation of the effects of combined environments
more effectively. Accordingly we undertook, at the request of the Lewis
Research Center, the task described in this report.

1.2. Task Outline

The task proposed for investigating the durability of pressure
transducers encompassed the following tests on a group of bonded-wire
strain gage transducers of two different ranges 0 to 15 psig (0 to
1.03 x 10° Pa) and 0 to 100 psig (0 to 6.89 x 10° Pa). The transducers
were to be pressure cycled to 40 x 10 cycles at the rate of 5 Hz at
laboratory ambient conditions and at 150°F (65.6°C). In addition, some
of the transducers were to be cycled at pressures greater-than the full
scale range. It was also planned to investigate briefly the feasibility
of pressure cycling at higher rates, possibly as high as 100°Hz. In each
of these investigations we proposed using four transducers, two to serve
as controls while the other two were undergoing the tests. Throughout
the tests, all transducers were to be calibrated statically at specific
intervals. o

2, TEST EQUIPMENT
2.1. Test Setup
The test setup is shown in Figures'lfand 2. It consists of the test

and calibration console, and oscilloscope for monitoring pressure wave
shape,-and two transducer test stations.

The console contains the static calibration equipment and the cycling
control setup. The static calibration equipment contains = a set of
pressure regulators, solenoid control valves, a pushbutton assembly for
actuating the solenoid valves, and a constant-voltage power supply for
each of the two ranges of pressure transducers. A schematic of the cali-
bration setup is shown in Figure 3. A precision quartz Bourdon tube
pressure indicator and a precision, five-digit, integrating voltmeter
are also in the calibration console and serve both pressure ranges
of test transducers. In addition, an electrical patch panel for each
pressure range permits selective measurement of the power supply voltage
and the output voltage of each of the four pressure transducers in each
test group. Further, each patch panel also contains the switches and the
electromechanical totalizing counter required for each of the two pressure
cycling. arrangements. Pressure cycling is controlled by a motor driven
cam operating a switch which energizes a three-way solenoid valve at the
rate of 5 Hz at each test station. A schematic of a patch panel is shown
in Figure 4. :

The quartz Bourdon tube pressure indicator has a full scale range of
100 psig to facilitate the calibration of transducers of both ranges,
Since the pressure transducers furnished by NASA for the tests have full
scale ranges expressed in psig and the precision quartz Bourdon tube
pressure indicator and the air piston deadweight tester used to calibrate
" the latter are also calibrated in terms of psig, these units are used
in this report. For conversion purposes, it should be noted that 1 pound
per square inch gage (psig) is equivalent to 6894.7 pascals (newtons per
square peter) in the SI system.
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The test stations, shown in Figure 2, were built into the removable
doors of two temperature chambers. This was done to facilitate tests at
elevated temperatures which are accomplished by inserting the door with the
attached components into the chamber, For laboratory ambient tests, the
test station was simply left exposed on the laboratory bench. Each test
station has its own pressure regulator to set the cycling pressure
amplitude, a dial gage to indicate its value, and a solenoid valve which
does the actual cycling. A series of valves at each station permits
rapid switching from the cycling mode (during which the control transducers
are isolated from the fluctuating pressures) to the calibration mode in
which all four transducers can be calibrated statically. Flexible pressure
hoses with quick-connect features and some additional valves in the
calibration console enable the change from cycling mode to calibration mode
to be made in about thirty seconds.

2.2. Test Equipment Failures

A number of test equipment. components failed during the test period.
The electrical power for the cycling valves was controlled by a
snap-action switch which was actuated by a five-lobe cam rotated by a
motor at one rotation per second. Switch failures were initially
handled by simple switch replacement, although the actual positioning of
the body of the switch with respéct to the cam was quite critical. Sub-
sequently we learned that in several cases, with proper switch position-
ing for the desired valve actuation time, the timing motor had to exert
excessive torque during certain portions of the cycle. This was true
despite the use of rollers at the end of the switch leaf. We believe
several failures of the timing motors resulted from the large mechanical
resistance of the switch leaf causing damage to the teeth of the reduc-
~tion gears in the timing motors.

We experienced a high failure rate of the electromechanical counters
used to keep track of the elapsed number of cycles. Again, the failures
appeared to result from wear on mechanical components. At those times
when both cycling setups were in use, if one counter failed (say during a
weekend) it was possible to calculate the number of cycles applied by that
setup, provided the other counter had accumulated the expected count. Con-
- versely, if one timing motor failed, we accepted the final indicated
count as correct, provided the counter continued to function properly
after the timing motor or switch had been replaced. There was no in-
stance in which the timing motor, switch and counter failed during the
same unattended time interval. The counters had been purchased as new
surplus with a life raténg to 200 x 106 cycles. The failures occurred
after 1, 4, and 10 x 10° cycles respectively. The defective counters
were returned to the dealer for repair or for replacement, and one of the
replacements also failed. Spares of a different model were finally pro-
cured as back-up, but did not have to be used.

One solenoid valve failed after about 39 x 10° operations, a second
one, although still operating, was replaced when one test station was
modified for over-pressure testing.



To avoid the timing-motor switch failures, we assembled a new
switching system. It consists of a heavy duty one-rotation-per-second
motor driving a round disc of mild steel with five circular holes equally
spaced around a circle concentric with the shaft. Two permanent magnets
are mounted on a framework on one side of the disc, two glass enclosed
magnetic reed switches are mounted on an insulated plate on the opposite
side of the disc and facing the magnet. The reed switches are alternately
subjected to the magnetic field, or shielded from it by the rotating
disc at the rate of 5 Hz. This system has proved to be more reliable
than that previously used. The reed switches are easily replaced should
this become necessary.

3, TEST PROCEDURES
3.1. Static Calibrations

Early in September 1971, upon receipt of the twenty pressure trans-
ducers, we calibrated each of them statically three times, consecutively.
We selected four transducers of each of the two pressure ranges for the
first series of cycling tests at laboratory ambient conditions. The
choice was based on the following criteria: minimum deviation from line-
arity, minimum hysteresis, minimum spread among zero pressure output
values, and smallest standard deviation (minimum scatter). The two
transducers which most nearly met all 'of these criteria were selected
for cycling, the next best two were used as controls. The latter
were not subjected to pressure cycling, but were calibrated statically
at the same time as the cycled ones.

From the 15-psig group, we selected #41929 and #41932 for cycling,
and #41931 and #41919 as controls. From the 100-psig transducers, we
chose #41921 and #41933 for cycling, and #41923 and #41927 as controls.

Our calibration and cycling setup accomodates four transducers of
each pressure range at one time. We followed a standardized procedure,
developed during the previous investigation, by carrying out an eleven-
point static calibration on each transducer. We used the same procedure
for all subsequent static calibrations of the transducers during, and
after, the cycling tests. :

One hour prior to calibration, the quartz Bourdon tube pressure
standard and the digital voltmeter were turned on to assure their thermal
stability during calibration. The transducer excitation supply was al-
ways kept on, even during equipment down-times. A test on the quartz
Bourdon tube thermal stabilization system indicated that a stable
temperature was attained in the laboratory one half hour after the
power was turned on. :

- The calibration procedure consisted of an initial reading of the
transducer temperature (room temperature was used for ambient temperature
tests, whereas the transducer case temperature was used for the elevated
temperature tests) followed by measurement of the transducer excitation
voltage (nominally 10 volts), and measurement of the zero output
voltage of each instrument with zero pressure on the transducers. The
voltage measurements performed were ''open circuit" ones; the input
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resistance of the digital voltmeter was 1 ohms.

After recording these values, the push button was activated which
energized a solenoid valve applying the pressure from the first regulator
to the four transducers. This first regulator was set to about 20% of
the full-scale range (FS) of the instruments tested. After system pres-
sure had stabilized (about 15 seconds) the output voltages of the first
two transducers were read. Then the applied pressure was read from the
digital indicator of the Bourdon tube reference, followed by output
voltage readings of the remaining two transducers. The same procedure was
followed for all remaining calibration points up to full scale and back
down to zero pressure. At the conclusion of the calibration final temp-
erature and power supply readings were taken. This entire procedure re-
quired about ten minutes for the four transducers, a significant improve-
ment over our previously used calibration procedures. In all cases, the
calibration sequence was: control, control, cycled, cycled, transducer.
The possible small amount of bias introduced by this fixed procedure is
far outweighed by the ease of keeping track of the calibration data for
each transducer. '

Calibrationdata were punched into data cards along with a power
supply value averaged from the two measured values. The data were re-
duced by a '"'least squares best straight line" computer program, which
also corrected input pressure dial readihgs to true pressure values. The
print-out shows sensitivity (slope) in terms of (mV/V)psi, as well as
deviations from the line (linearity), hysteresis, initial and final
zero outputs, and standard deviation (a measure of the scatter of all
calibration points).

3.2. Tests at Laboratory Ambient Conditions

The first series of tests involved the cycling of the pressure trans-
ducers of both ranges at laboratory ambient conditions. As explained in
3.1 above, two transducers of each range were selected for cycling, the
other two were used as controls. All four were calibrated statically at
selected intervals during the test period, following the procedure
described above.

On the basis .of the pressure cycling results obtained from the
previous task, [1], we dec1ded to ca11brate after Ehe follow1ng numbers
of pressure cycles: 5 x 104 , 105, 2 x 10, 5 x 10 10 2 x 106
4 x 10°, 6 x 10°, 8 x 105,10 x 10%, 15 x 105, 20 x 106, 25 x 10°,

30 x 105, 35 x 106, 40 x 10°. We did not in fact follow this pattern
after about 2 x 10° cycles, primarily because of the constraints
of working time limitations. As noted on the graphs, the calibration
intervals were on the order of 3 x 10° cycles. The established routine
was to interrupt cycling each Friday morning, calibrate the transducers
statically, and then resume the cycling. Equipment failures and holidays
also contributed to minor irregularities in the cycling program. Immedi-
ately after 40.x 106 cycles had been reached, a static calibration was
‘run, followed by a final one four to seven days later. This was done to
assess the permanent changes in performance characteristics caused by the
cycling.



The actual cycling pressure was kept below the full scale range of
the transducers to avoid any possible overload due to line pressure or
regulator variations. The. amplitudes were set at 13.5 psig (90% FS) for
the 15-psig instruments and at 95 psig (95% FS) for the-100-psig ones.
In view of the number of static calibrations required during the early
stages of the test, we started the cycling procedure with only the 15 psig
transducers. After they had been tested for three weeks, we began testing
on the 100-psig transducers.

- As described in the next section, when the 100 psig transducers
were cycled at laboratory ambient conditions, the inside of the instru-
ments actually reached a temperature close to the 150°F (65.6°C) level.
To be able to test at room temperature and at the 5 Hz rate, we experi-
mented with various cooling schemes near the end of the test series and
finally found one that worked satisfactorily. It uses a coil of copper
tubing wound around the transducer case, perforated at 90° intervals and
fed directly from the laboratory 110-psig air line. With this cooling
system, the cycling of the 100-psig transducers was then carried out at
essentially. laboratory ambient conditions. The temperature of the cases
of the two cycled instruments was monitored by a thermocouple throughout
the tests. In view of time and funding limitations we carried these tests
only to 10 x 100 cycles. Some adiabatic heating also occurred in the
15-psig transducers. This, combined with the internal electrical dis-
sipation, resulted in a transducer case temperature after cycling-of about
86°F (30.0°C) at an ambient temperature of about 75°F (23.9°C). Conse-
quently, tests at ''laboratory ambient conditions" actually represent a
case temperature of 86°F (30.0°C) for the 15-psig transducers. '

3.3, Tests at Elevated Temperatures

It was the original intention to test the transducers first at lab-
oratory ambient conditions, (see 3.2 above) and then to test another group
of four transducers in a temperature chamber at 150°F (65.6°C). This was
the procedure followed with the 15-psig transducers. The test station
shown in Figure 2 was placed in a temperature test chamber which was set
to operate at the desired temperature level. The actual transducer tem-
perature was monitored by chromel-alumel thermocouples: one .attached to
the case of a cycled transducer, the second one to the case of a control,
and then the. third one to monitor the test chamber air temperature.

Again as in the laboratory ambient tests, static calibrations were
made after the number of pressure cycles outlined in 3.2 had been per-
formed. - Calibrations of the transducers which were subjected to adia-
batic heating were started not more than two minutes after cycling had
stopped. The calibration procedure described in 3.1 was followed with
the addition of the measurement of the three temperatures before and
after the calibration.

The initial static calibration was actually at about 86°F (30.0°C)
case temperature due to internal power dissipation: following this the
- temperature in the chamber was raised in steps to 100°F (37.8°C),
125°F (51.6°C) and 150°F (65.6°C). Thé transducers were allowed to
stabilize at each of these temperatures for one hour prior to a static
calibration at that temperature. When the 150°F level was reached, the
temperature was kept at this level for the remainder of the tests on the
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15-psig transducers.

About the time that testing all the 100-psig transducers at laboratory
ambient conditions had reached 10 x 100 cycles, we noted that these
transducers seemed hot. A thermometer placed against the case of one
of the cycled transducers indicated 130°F (54.4°C). It seemed likely that
the diaphragm and strain gages would be at an even higher temperature as
a result of the adiabatic temperature rise of the gas during cycling;
probably close to the desired 150°F (65.6°C) level. Accordingly, we
continued this test series without any changes in setup until the 40 x 10
cycle point was reached and considered this experiment as the high cycle

temperature test for this transducer range. Subsequently, we checked our
assumption more closely by taking apart one of the 100-psig transducers
that had survived 40 x 100 cycles and mounting thermocouples at various
locations. We cycled the re-assembled transducer for one hour until the
temperature of its components had stabilized. The data resulting from
this experiment are shown in Figure 6. Tests other than those reported
in Figure 6 indicated a temperature rise of about 5°F (2.8°C) during the
second hour. Within about two minutes after cessation of cycling, the
diaphragm temperature drops essentially to the case temperature . That
temperature then further decays exponentially, reaching the starting
temperature about one hour later. The temperature drops from about 147°F
(63.9°C) two minutes after cycling shut-off to 126°F (52.2°C) ten minutes
later (the time period normally required for the after-cycling static
calibrations). The static calibrations of the 100-psig transducers
following cycling were thus conducted at an average transducer temperature
of about 137°F (58.3°C) while the cycling temperature as measured at the
strain gages was about 162°F (72.2°C). A brief theoretical investigation,
assuming adiabatic charging and discharging of pressure vessels [3]
(neglecting the possible loss of heat to the walls of the transducer),
indicated a value of average gas temperature in the transducer of roughly
208°F (97.7°C), is undoubtedly a loss of heat to the walls, thus lowering
the actual gas temperature (and therefore temperature of the thin
diaphragm). This computed value supports the assumption that the measured
diaphragm temperature is quite - close to the actual temperature.

3.4, Artificial Cooling of 100-psig Transducers

6

As indicated earlier, we were able to perform cycling tests on the
100-psig transducers at laboratory ambient conditions at the 5-Hz rate
with the aid of a cooling jacket consisting of a perforated copper tube
wrapped around each cycled transducer case and using the laboratory
air line to supply cooling air. A series of tests was run on the previ-
ously used 100-psig transducer instrumented with three thermocouples. The
results are shown in Figure 6. In the first test without the cooling,
jacket temperatures continued to rise slightly after one hour. The three
temperature curves (diaphragm, strain gage beam, and case) nearly coincide
within two minutes after cycling shut-off. Using the cooling jacket sup-
plied with compressed air at 100 psig from the laboratory air line,

" another test was run. The results are also shown in Figure 6. It can be
seen that after one hour of cycling, the component temperatures are sta-
ble: the diaphragm at about 104°F (40.0°C) the strain gage beam at

86°F (30.0°C) and the case at 81°F (27.2°C). Within two minutes after
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cycling ended (but with air cooling continued) all three temperature
curves merged into that of the case, which had dropped to approximately
78°F (25.6°C). This was considered close enough to the laboratory
ambient teﬁperature so that cycling tests performed with this additional
cooling were truly laboratoy ambient tests.

3.5. Over-Pressure Tests

With the agreement of the sponsor, two of the 15-psig transducers
were subjected to cycling at laboratory ambient conditions at pressure
amplitudes greater than the full-scale range. The first one was pressure
cycled at 30 psig (2.04 x 10° Pa) (200% FS) and failed before reaching
35,000 cycles; the second was subjected to about 22 psig . -(1.50 x 105 Pa)
(147% FS) following essentially the same calibration-cycling-calibration
sequence used during the test procedures outlined in 3.1. and 3.2., but
terminating after about 4.5 x 100 cycles. 1In our judgement, a transducer
in measurement use is highly unlikely to be exposed to such an over -
pressure for even this number of cycles.

4, TEST RESULTS
4,1. Experimental Uncertainty Considerations

As indicated previously, the pressure applied to the transducers
during static calibration was measured With a quartz Bourdon tube pres-
sure gage reference. By using a Bourdon tube element with a range of
0 to 100 psig, we were able to calibrate pressure transducers of both
ranges without changing elements. This saved a considerable amount of
time since the warm-up time for another element was eliminated. The
measurement accuracy was compromised.only to a very minor:degree.for al-
most - all calibrations, as will be apparent from the estimated uncer-
tainties for static calibrations .of the transducers at 15 psig and
100 psig during the cycling procedure shown in Tables I and II.

The calibration chart which gives values of true pressure versus dial
reading of the quartz Bourdon tube gage is described by the manufacturer
as being accurate within #0.015% of the reading. We calibrated the gage
against a dead weight air piston gage pressure reference which its manu-
facturer indicates as having an accuracy of +0.015% of the reading. Both
instruments.are described as having been calibrated against NBS traceable
standards. The results of two calibrations which we performed, about
five weeks apart at 7.5, 15, 50, and 100 psig, showed a maximum deviation
between .the corrected values of pressure for both devices of 0.011% of
the reading, and an average deviation of 0.007% of the reading.

The tables show a detailed listing of the sources of error in the
static calibration after cycling and their estimated magnitudes. The
estimated error of the measured value of the excitation voltage, the
pressure reference and the digital voltmeter are treated as systematic
error (bias).' The estimated effect of adiabatic expansion of the gas,
_in view of its small magnitude, is treated as a random error. Both’
systematic and random errors are summed into respective totals as the
square root of the sum of the squares of the values [4]. The systematic
error may be ignored for those tests where changes in the characteristics
of the full-scale range of the transducer were investigated
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The sum of the estimated systematic errors is 20.040% of the reading at
15 psig and 100 psig full-scale pressure. The sum of estimated random
errors is $0.021% of the reading at 15 psig, and +0.026% of the reading
at 100 psig. The estimated total error, obtained by adding three times
the summed random error to the summed systematic errors is +0.103% at
15 psig and +0.118% at 100 psig.

These values should apply to all calibrations following cycling for
the 15-psig transducers. They should anply as well to the initial static
calibrations and the ones at 150°F (65.6°C) for these transducers since in
all cases the estimated variations in transducer temperature are within
+2°F. The estimated values for the 100-psig transducers should apply to
the calibrations following cycling without cooling. For the initial
callbratlons, and those with additional cooling, the estimated random
error in transducer temperature probably do not exceed t5°F rather thzn
the +10°F estimated in Table II, thereby reducing the estimated random
error total to +0.015% for the 100-psig transducers.

The computer program used for reduction of the calibration data
furnishes a print-out of the computed standard error based on ten degrees
of freedom (eleven calibration points). In addition one obtains values
of hysteresis and of the deviations of the experimental points from the
computed best-fit straight line. All of these experimentally derived
values are shown in Tables VII-XIV. Table IV lists the computed values
of the standard error from all static calibrations, expressed as a
percentage of the sensitivity of the transducer. It will be noted that
most of these values are considerably larger than the estimated values in
Tables I and II. The reason is that these computed values (deviations
from the ""best-fit straight' line) include the effects of transducer
linearity and hysteresis, which are not included in the estimated values.

4.2. fGeneral Considerations of Plotted Data

The data obtained from the tests are plotted in two general type of
graphs. The first tvpe (Figures 7-13) shows the changes in sensitivity
or in zero-pressure output for the four transducers in a test group as a
function of test duration. In the gase of the cycled transducers, the
test duration scale is ''cycles x 10°", for the centrol transducers the
test duration scale is ''days since start of test''. The two scales are
given at the bottom and top of the gravh, respectively. The latter
scale is not completely linear, because of various amounts of downtime
during these tests and because the cycle scale was linearized for
plotting purposes as the more important one. The scale from 0 to
2 x 100 cycles is expanded to show early cycling results. In some
graphs a final point, taken following a four-to seven-day rest after
cycling, is indicated by a square. It represents the total permanent
effects of the test procedure on the transducer. The vertical scale
is-given in terms of the change in sensitivitv (%) or zero-pressure
output (% FS) from the first static calibration immediately prlor to
cycling.

The second tyvme of graph (Figures 14-21) shows the effects of the
test procedure on linearity and hysteresis. In this case, the deviations

from the computed least s%uares straight line are plotted as a function
of the full scale range of the transducer. For the cycled transducer
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the curves are plotted for the initial static calibration (immediately

prior to cycling) and for the final calibration after the cycling pro-

cedure had been completed. For the control transducers, the curves are
also shown. for the first and final calibrations. The vertical scale

of these graphs is percent of full scale (% FS).

4.3. Sensitivity Changes

The changes in transducer sensitivity during the test procedure are
plotted in Figures 7, 8, 9, 10. The sensitivity characteristics of the
15-psig transducers are shown in Figures 7, and 8. Differences among
the eight curves (four controls and four cycled transducers) are not
clearly significant, although it appears that the sensitivities of the
two transducers cycled at 150°F may show slightly greater excursions and
slightly greater slopes than any others plotted. An attempt was made to
establish trends by determining the slope of the ccmputed least-squares
straight line through all sensitivity values for all transducers tested
(and subsequently through the zero pressure output values also). These
data are contained in Table IIL. To provide comparison between control
and cycled transducers, the equivalent number of cycles from the graphs
were substituted for the number of elapsed days for the control trans-
ducers. .

From the data in this table, computed over a testing span of
40- x 106 cycles, it can be seen that for the 15-psig transducers:

A. The sensitivity decreases by ‘an average of 0.010% for three of the
four 15-psig transducers (controls and cycled) tested at laboratory
- ambient conditions.

B. The sensitivity increases by an average ‘of 0. 025° for three of the
four 15-psig transducers tested at 150°F (65.6°C). '

C. On the basis of these observations, it'appears that there is no change
in sensitivity that can be unamblglously attributed to the cycling it-
“iself. :

For the 100-psig transducers (Figures 9 and 10) extrapolating to
40 x 106 cycles the data from the laboratory ambient cycling tests which
lasted for 10Y cycles, it can be seen that:

A. The sensitivity decreases by an average of 0.11% for the four trans-
_ducers (controls and cycled) tested at laboratory ambient conditions.

B. The sensitivity increases by an average of 0.3C% for the two trans-
~ducers cycled at 150°F (65.6°C).

C. The tests at laboratory,amblent conditions indicate that there may be
an effect of cycling on sensitivity, although the scatter of values
is too great to confirm this. It was not possible to corroborate this
_at 150°F (65.6°C) since no 100-psig controls were tested at that
temperature. ' '

On examining Figures 7 and 8, it can be seen that the random vari-
ation in characteristics are slightly larger than .the random error values
estimated in Table I. This is undoubtedly due to some random variation in
properties of the transducer, which, of course, are not included in the
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estimates in that table. There are also some observable changes in appar-
ent characteristics of all transducers tested at the same time and in the
same directions. These are thought to result from small variations in the
systematic errors of the calibration system, and are well within the
limits estimated for these errors.

It can also be seen in Figure 9, that transducer #41921 (100-psig
cycled, 150°F) is more erratic in behavior than the other transducers,
and exhibited a permanent change in sensitivity of about 0.20% at labora-
tory ambient temperature at the conclusion of the tests.

4.4, Zero-Pressure Qutput Changes

The changes in zero pressure output during the test procedure are
plotted in Figures 10, 11, 12, 13. The slopes of the least squares
straight lines through the zero output values are compiled in Table III.
From the data in this table (and computed over a testing span of
40 x 10® cycles) it can be seen that for the 15-psig transducers:

A. The zero pressure output decreases with cycling an average of
0.084% FS at laboratory ambient conditions and an average of
0.33% FS at 150°F (65.6°C).

B. The zero pressure output of three of the transducers shows no signif-
icant common trend either at laboratory ambient conditions or at
150°F (65.6°C), although individual transducers show variations. The
fourth transducer, #41919, shows a drift much larger than the esti-
mated total error.

For the 100-psig transducers (data from the laboratory ambient tests
were extrapolated to 40 x 106 cycles), it can be seen that:

C. The zero pressure output decreases for all transducers tested. For
the control transducer (all four at laboratory ambient conditions)
the average change was 0.12% FS. For the two transducers cycled at
laboratory ambient conditions, the average change was 0.45 % FS, and

for the two transducers cycled at 150°F (65.6°C) the average change
was 0.60% FS.

Figure 10 shows somewhat erratic excursions for transducers #41925
(control) and #41924 (cycled) at laboratory ambient conditions. Figure 11
shows the large drift and erratic behavior of the zero pressure output of
transducer #41919 (which had originally been selected as control on the
basis of the results of the initial set of three static calibrations).
Figure 13 shows some erratic excursions of the zero pressure output of
transducers #41921 and #41933 while cycled at 150°F. After 6 x 106 cycles
these transducers appear to settle down, however.

4.5. Linearity and Hysteresis Characteristics

The effects of the test procedures on the linearity and hysteresis
characteristics are shown in Figures 14-21. In each case the data are
shown for the initial static calibration (prior to cycling of the cycled
transducer) and calibration after all cycling had been completed. For
"~ the 15-psig transducers:
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A. The.maximum hysteresis is slightly smaller at the end of the test
period for the controls than at the beginning. This applies to
laboratory ambient as well as elevated temperature tests.

B. The maximum hysteresis is slightly larger at the end of the test
period for the cycled transducers at both test temperatures.

C. .Maximum hysteresis values range from about 0.25% FS (#41931, control,
laboratory ambient) to 0.10% FS (#41918, cycled, 150°F) .

D. There is no discernable change in linearity.
For the 100-psig transducers:

A. The maximum hysteresis is slightly smaller at the end of the test
period for three of the four control transducers at laboratory ambient
conditions.

B. The maximum hysteresis is essentially unchanged at the end of the
test period for the four cycled transducers (150°F, and air cooled to
laboratory ambient conditions).

c. The maximum hysteresis values range from about 0.01% FS (#41920,
control, laboratory ambient) to 0.03% FS (#41928, cycled, air cooled
to laboratory ambient).

p. The two transducers cycled at elevated temperature showed only a
small change in linearity (Figure 19).

.The experimentally obtained values of hysteresis did not exceed
the manufacturers' specification of 0.1% FS. The combined linearity
and hysteresis values did not exceed manufacturers' specifications
+0.25% FS (15-psig) and £0.2% FS (100-psig).

4.6.. Mounting and Temperature Effects.

~ Prior to cycling the 15-psig transducer at the elevated test temper-
ature, the temperature of the environmental chamber was raised in three
steps. At each step a stabilization time of one hour was allowed before
a static calibration was performed. The data from these calibration and
data from static calibration performed after 10° cycles and 40 x 10
cycles are plotted in Figure 22. These transducers had been calibrated
upon receipt (as were all others) after which they were removed from the
test setup and later reconnected for the cycling tests. The data from
the calibration (upon receipt) are also plotted, and it can be seen that
for three of the four transducers the change in sensitivity between the
two static calibrations (before and after remounting) is greater than

any subsequent change due to cycling or storage at the elevated temper-
ature. -Zero output pressure changes before and after remounting are also
significant, relative to the somewhat greater changes due to the test
procedure. We decided to investigate briefly the possibility that the
torque with which the pressure line was attached to the transducer caused
changes in transducer characteristics. Accordingly, the four 15-psig
transducers previously tested at 150°F (65.6°C) controls, #41914 and
#41916; and cycled, #41915 and #41918 were re-calibrated at laboratory
ambient conditions after they had been disconnected from the test setup
and then reconnected. The first test used a torque on the pressure
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fitting of roughly 6 1b -ft. (8.2N-m), just enough to prevent a leak at
pressure. The second test used a torque of about 17 1b -ft. (23N-m)
close to the point of deforming the brass pressure fitting. Eleven-point
static calibrations were performed at each value of torque and the data
were reduced and compared tothe final static calibration following rest
after cycling. The maximum change in sensitivity observed for any trans-
ducer was 0.03%, the maximum zero shift 0.09% FS. No correlation between
torque and change in characteristics was found. It appears likely then
that the changes observed (see Figure 22) between acceptance calibration
and the first test calibration 133 days later may be attributed to the
passage of time rather than mounting torque.

The results of the static temperature tests are shown in Figure 22
as seen from the graphs, the sensitivity of all transducers.decreases with
increasing temperature, at rates from 0.12% to 0.26% per 100°F (essen-
tially within the manufacturers specifications of +0.25%). Zero shifts
with temperature showed a variation ranging from +0.10% FS to +0.20% FS.
The observed results do not include the effects of cycling or timelapse.

4.7. Over-pressure Cycling Effects

Two 15-psig transducers were subjected to pressure cycling at ampli-
tudes greater than the full scale range. One transducer was run at
200% FS and failed sometime after 14 Xx 103 cycles and before reaching
35 x 103 cycles. Since none of the other transducers had exhibited any
problems as a result of cycling up to 40 x 108 cycles, we did not
monitor the test closely enough to establish the exact time of failure,
which manifested itself as an open arm in the strain gage bridge.

A second transducer, #41917, was pressure cycled (laboratory ambient
conditions) at a nominal pressure of 22 psig (about 147% FS). The re-
sults are shown in Figure 23 which also shows the characteristics of
#41931 (control% over a period of 26 days. Testing continued until
almost 4.6 x 10° cycles had been reached. The sensitivity of the cycled
transducer showed an initial drop of about 0.12% during the initial
4 x 10° cgcles, followed by a gradual rise in sensitivity at the rate of
0.018%/10° cycles. This rate is considerably greater than that obtained
during tests of the other transducers, as summarized in Table III.

The zero pressure output of this transdgcer shows an initial drop
of about 0.35% FS during the initial 4 x 10” cycles. This was followed
by a gradual but continuing drop at a rate of about 0.015% FS/10% cycles.
The total change in zero pressure output during this test is also
considerably greater than that observed in the other transducers
tested (compiled in Table III). Only transducer #41919 in this table
shows unstable zero-pressure output from the beginning of the tests.

4.8. Increased Cycling Rate

A brief investigation of the experimental feasibility of cycling
rates greater than 5 Hz was carried out. A large ten-lobe cam was
attached to the shaft of a motor rotating at 1 rps. A cam operated snap-
action switch was used to operate the same type of solenoid valve used in
the 5-Hz test setup. A 100-psig test transducer was connected to the
valve with a three-inch length of tubing. Operation of this system
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showed that 10-Hz operation is feasible, although careful design of
such a cam (or of 4 magnetic reéd switch cycling system) is necessary to
allow adequate time for the pressure in the transducer to reach its full
value. Similarly, care must be taken to insure complete discharge of
the transducer pressure during each cycle. The test transducer got hot
very quickly due to adiabatic compression, and if this cycling rate
were to be used, artificial cooling of the transducer would undoubtedly
be necessary. In view of the minimum practical length of connecting
tube used for this experiment and the limitations imposed by solenoid
valve and transducer internal volumes, it does not appear practical to
attain cycling rates of greater than 10 Hz for this type of transducer.

5. CONCLUSIONS

From the test results summarized in Sections 4.3. - 4.7., certain
conclusions may be drawn for the particular type of transducer tested.
Their application to other types of pressure transducers may not be
valid, nor is the sample size used here adequate to permit predicting
the characteristics of other individual devices of this type.

A. The sensitivities of some of these transducers tested at laboratory
ambient conditions decrease with cycling as well as time. '
This appears to rule out work hardening of the elastic members
as a cause. ’ ’ :

B. The sensitivities increase for most transducers tested at
elevated temperatures. Thus, it is not possible to clearly
attribute any change in sensitivity to the cycling (for

‘nominal full scale pressure amplitudes).

C. Changes in sensitivity are smaller numerically than changes
in zero pressure output.

D. The zero pressure output decreases with cycling for the 15-psig
transducers, and for the 100-psig transducers with cycling
and time. In all cases, the quantitative changes were larger
with cycling, and at elevated temperatures.

E. Changes in hysteresis and linearity with cycling or time are
small compared to the values of these characteristics
themselves. (Hysteresis, itself, did not exceed 0.1% FS in
the worst case.)

F. In the case of some transducers, somewhat larger changes in
characteristics may be expected during the first 105 cycles
than during later testing. In addition, some of the control
transducers showed such changes during the first three or four
days of testing.

G. Over-pressure cycling produces characteristics similar to those
observed during earlier work (See Reference [1]): Sensitivity
ang zero pressure output change significantly during the first
10° cycles, and more gradually after that.

H. In general, the 15-psig transducers show smaller changes in
performance characteristics during the entire test procedure
than the 100-psig units.
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6. RECOMMENDATIONS

To obtain the desired accuracy of pressure measurement over a long
period of time by the use of this type of transducer several consider-
tions should be observed:

A. Tt is desirable to keep the transducers at a stable temperature
as close to laboratory ambient conditions as possible within
system operating constraints.

B. In view of some observed characteristic changes during early
cycling and aging, it may be desirable to age the transducers
after the first static calibration, and to perform anpther static
calibration after this. Immediately following, the transducers
should be cycled 10° times, and again calibrated.

Cycling should preferably be at lower rate than 5 Hz or should
involve cooling, to avoid the stress of elevated temperature
cycling. The results from the three calibrations should be within
the manufacturers specified limits of repeatability to furnish a
reasonable assurance of the desired measurement performance.

C. Although the transducers sampled did not show any apparent
mounting torque or aging effects on characteristics, all transducers
should be calibrated statically after assembly into the final
measurement system.

/. REFERENCES

1. "Life Cycling Test on Several Strain Gage Pressure Transducers' NBS
Technical Note #434, October 1967.

2. '"The Effects of Extended High-Temperature Storage on the Performance
Characteristics of Several Strain Gage Pressure Transducers' NBS
Technical Note #497, October 1969.

3. "Compressed Gas Handbook" J. S. Kunkly, S. D. Wilson and R. A. Cota,
NASA SP-3045, 1969.

4. 'Precision Measurement and Calibration' NBS Special Publi;ation 300,
Volume 1, February 1969.

16



TABLE I

Estlmated Callbratlon Uncertalntles

15 psig Transducers at 15- -psig
(after cycling)

Systematic Random Erronm
‘Error, Per- | Percentage
centage of of Reading
Reading '

Source of Error

Excitation Voltage

Estimated error of measured value, 10 V +0.010 | ~------

Estimated variation during calibration, #0.5 mV £0.005

Applied Pressure

Accuracy of calibration (manuf. value) . £0.015 ————c--
Repeatability, resolutlon t d1a1 d1V151on . - v +0.007

Quartz Bourdon tube stabllltv 0 002% FS +0.013
(manuf. value) -

Estimated effect of adiabatic expansion of
gas, 2 dial divisions _ . +0.013

Output Voltage Approximately 36 mV

Accuracy of calibration: +(0.008% reading .
+0.01% range) (manuf. value) +0.036 —r—————

Resolution :1 digit - , +0.003

Transducer Temperature

Average temperature durlng calibration after
cycling 86°F (29.8°C), variations
during calibration estimated at £2°F;
transducer temperature effect, 0.25%
FS/100°F (manuf. value) _ +0.005

Estimated Total Systematic Error;RMS = +0.040%
Estimated Total Random Error, RMS = : . +0.021%
Estimated Total Error (S.E. +3 R.E.) = $0.103%
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TABLE II

Estimated Calibration Uncertainties

100 psig Transducers at 100 psig

(after cycling)

Source of Error

Systematic Error
Percentage of

Random Error
Percentage
of Reading

Excitation Voltage

Estimated error of measured value, 10 V

Estimated variation during calibration,
+0.5 mV

Applied Pressure

Accuracy of calibration (manuf. value)
Repeatability, resolution, %1 dial division

Quartz Bourdon tube stability, 0.002% FS
(manuf. value)

Estimated effect of adiabatic expansion of
gas +5 dial divisions

Output Voltage Approximately 36 mV

Accuracy of calibration, (manuf. value):
+(0.008% reading +0.01% range)

Resolution, +1 digit

Transducer Temperature

Average temperature during calibration after

cycling at 137°F (58°C); variations
during calibration estimated at $10°F;
transducer temperature effect, 0.25%
FS/100°F (manuf. value)

Reading

+0.010

+0.015

+0.036

- -

+0.025

Estimated Total Systematic Error, RMS= +0.040%

Estimated Total Random Error, RMS

Estimated Total Error (S.E. +3 R.E.) = +0.118%
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TABLE TV

Values of Standard Deviation

Computed as a Percentage of the Sensitivity
from Static Calibration Data in Tables VII-XV

Transducer Test Conditions Initial | Final |Smallest Largest
41919 15 psig control ambient .0468 .0418 .0413 .0470
41931 15 psig control ambient .0470 .0485 | .0462 .0533
41929 15 psig cycled ambient .0470 .0501 | .0420 . 0504
41932 .15 psig cycled ambient. .0500 .0537 .0495 .0575
41923 100 psig control ambient|{ .0150 .0245 .0150 .0253
41927 hOO psig control ambient 10300 .0277 .0263 .0300
41921 100 psig cycled 150°F .0297 .0252 | .0169 .0311
41933 100 psig cycled 150°F .0531 .0554 | .0364 .056%
41914 15 psig confrol 150°F .0611 .0594 .0555 .0625
41916 15 psig control 150°F .0577 .0563 .0552 .0613
41915 I5 psig cycled 1$0°F .0761 .0777 .0700 .0834
41918 L5 psig cycled 150°F .0598 .0754 .0598 .080S
41920 100 psig control ambient| .0446 .0416 | .0416 .0446
41925 0 psig control ambient| .0326 .0390 .0324 .0393
41924 100 psig cycled cooled .0339 .0334 .0334 . 0406
41928 flo0 psig cycled cooled .0271 .0282 | .0271 .0332
41931 15 psig control ambient .0519 .0476 .0454 .0527
41917 IS psig cycled overpress .0644 .0647 .0582 .0671

Note: Seﬂsitivity Valhes in Tables VII-XV are giVen in terms of

(wV/V) /psiF, and are converted to full scale output values in beforn

dividing into standard deviation values in

this Table.
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15 PSIG CONTROL TRANSDUCERS
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EFFECT OF CYCLING ON LINEARITY § HYSTERESIS, 100 PSIG TRANSDUCERS, NO AIR COOLING
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LINEARITY § HYSTERESIS, 100 PSIG CONTROL TRANSDUCERS
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EFFECT OF CYCLING ON LINEARITY § HYSTERESIS, 100 PSIG TRANSDUCERS, AIR COOLED
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